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An algorithm is presented to derive the twin laws in non-merohedric twins

through the systematic search for quasi-perpendicular lattice planes/directions.

The twin lattice, i.e. the sublattice common to the whole crystalline edifice built

by the twinned individuals, is based on a supercell of the individual defined by a

pair of quasi-perpendicular lattice elements (hkl)/[uvw]. Starting from a (real or

supposed) twin element, (hkl) or [uvw], the set of quasi-perpendicular lattice

elements with user-defined limits on the twin index and obliquity is explored.

The degree of lattice quasi-restoration is commonly measured by the classical

twin index but in some cases, especially for large supercells, this index represents

only a first approximation of the degree of lattice quasi-restoration, because

more than one pair (hkl)/[uvw] may exist, and more than one concurrent

sublattices of nodes, based on the same twin element, may be quasi-restored,

although within different obliquities. These twins, whose existence has been

recently recognized, are termed hybrid twins. In hybrid twins, the degree of

lattice quasi-restoration is measured by the effective twin index nE, a

generalization of the classical twin index: in the limiting case of only one

(quasi-)restored sublattice, the effective twin index and the classical twin index

coincide. A number of examples previously reported simply as ‘non-Friedelian’

twins (with a twin index higher than the empirical limit of 6 established by

Friedel) are analysed and reinterpreted as hybrid twins. A Fortran program is

made available, which derives the possible twin laws according to this algorithm

and analyses the pseudosymmetry of the concurrent sublattices defined by each

pair (hkl)/[uvw]. The occurrence of hybrid concurrent components in twinning

does not affect the normal procedures of dealing with diffraction patterns of

twinned crystals.

1. Introduction

A twin is a heterogeneous edifice consisting of the oriented

association of two or more homogeneous crystals (individ-

uals); in this sense, a twin has also been defined (Ferraris et al.,

2004) as a modular structure at the crystal level (cf. a discus-

sion in Nespolo & Ferraris, 2004a). The symmetry of the

individuals is described by a space group G, whereas the

symmetry of the twin is identified in vector space by a point

group K which is a supergroup of H� = \iHi, the intersection

group of the oriented vector point groupsHi of the individuals

(Hahn & Klapper, 2003; Nespolo et al., 2004). The holohedral

supergroup (proper or trivial) of H is indicated by DðHÞ. Let

LT be the twin lattice, i.e. the lattice common to all the indi-

viduals in the twin (Donnay, 1940). DðLTÞ is the holohedral

vector point group describing the point symmetry of LT:

depending on whether K is also holohedral or not, we have

DðLTÞ � K or DðLTÞ = K. The coset decomposition of K with

respect to H� gives the possible twin laws, each coset repre-

senting a twin law, and each operation in a coset representing a

twin operation; the operations in a coset are equivalent under

the operations of H�. Operations in H describe the vector

point symmetry of the individuals, whereas those in the cosets

obtained by decomposing K in terms of H� connect the

different individuals. To underline their different nature, the

twin operations are often associated with a ‘colour’ and K is a

thus a chromatic vector point group, known as the twin point

group (Nespolo, 2004). Twins in which lattice rows common to

the individuals exist in three, two or one directions are called

triperiodic, diperiodic and monoperiodic, respectively

(Friedel, 1933). In this study, we devote our analysis to

triperiodic twins only, which are by far the largest of the three

groups.

The derivation of the twin laws is a straightforward task

once K and H are known or supposed. For example, in the

case of twinning by syngonic merohedry, K � DðHÞ and the



possible twin laws are obtained by coset decomposition of

DðHÞ with respect to H� = H. In non-merohedric twins,1

instead, when starting from H the number of possible twin

laws becomes very large: on the basis of the reticular theory of

twinning (Friedel, 1904, 1926), the probability of occurrence of

a twin law can be estimated by the lattice (quasi-)restoration

for the individuals in the orientations Hi, which, however, is a

criterion with several exceptions. One suitable approach to

derive the possible twin laws is to search for sublattices2 of the

individual lattice Lind. When a sublattice has at least one

symmetry element not coincident, either in type or orienta-

tion, with those of Lind, it represents a possible twin lattice LT,

and the corresponding holohedral group is D(LT): again the

twin laws are obtained by coset decomposition. This approach

is implemented in algorithms that explore possible supercells,

like OBLIQUE (Le Page, 2002), available in the PLATON

package (Spek, 1990). Another approach is to search directly

the possible twin elements on the basis of the lattice plane/axis

(quasi-)perpendicularity, obtaining thus D(LT) as the final

result. This is the approach we follow in the present article,

and that we have implemented in the program GEMINOG-

RAPHY, described below. Geminography is the term intro-

duced by J. D. H. Donnay to indicate the branch of

crystallography dealing with twinning (Nespolo & Ferraris,

2003). To describe the algorithm implemented in the program,

we need first a short theoretical excursus.

List of the symbols used in this article

Lind: the lattice of the individual

LT: the twin lattice; in the case of concurrent sublattices

(hybrid twins), these are numbered sequentially (L1, L2 etc.);

among these sublattices, LT is that corresponding to the lowest

obliquity and is always taken as the first sublattice: LT = L1

Hi: the oriented vector point group of the ith individual

H
�: the intersection group of the His

DðHÞ: the holohedral supergroup (proper or trivial) of H

K: the vector point group relating the various individuals in

the twin

D(Lind): the (holohedral) vector point group describing the

point symmetry of Lind

D(LT): the (holohedral) vector point group describing the

point symmetry of LT

G: the metric tensor in direct space

G�: the metric tensor in reciprocal space

h |: a row matrix (‘bra’)

| i: a column matrix (‘ket’)

n: the classical twin index, after Friedel (1904, 1926)

nmax: the user-defined highest value of the twin index used

in the exploration algorithm

!: the twin obliquity, after Friedel (1926)

�(n,!): region of the (n,!) bidimensional space where

concurrent sublattices built on nodes quasi-restored by the

twin operation exist

!LL: the user-defined lower limit of the obliquity used in the

exploration algorithm; default value set to 0�

!UL: the user-defined upper limit of the obliquity used in

the exploration algorithm; default value set to 6�

!lowest: the lowest value of the obliquity in the interval

!LL! !UL found in the exploration of the �(n,!): !lowest 2

[!LL,!UL]

nE: the effective twin index

��: number of points in �(�,!) that correspond to sublat-

tices

[uP
A;iv

P
A;iw

P
A;i], [uP

B;iv
P
B;iw

P
B;i]: the two directions defining the

primitive mesh in the ith (hkl) plane (i = 1 for reflection twins)

xAyAzA, xByBzB: the coordinates of the first node along the

two directions defining the conventional mesh in the (hkl)

plane

½uP
i vP

i wP
i �: for reflection twins, the ith direction quasi-

perpendicular to the twin plan (hkl); [uP
1 vP

1 wP
1 ] coincides with

[uP
TvP

TwP
T], which is the twin axis of rotation twins

[uC
i vC

i wC
i ]: the same direction as [uP

i vP
i wP

i ] but expressed in

terms of the axial setting of the conventional cell

xiyizi: the coordinates of the first node along the [uC
i vC

i wC
i ]

direction

� / �: subgroup / supergroup

\ / [: intersection / union

2. Basic concepts of an extended reticular theory of
crystal twinning

A twin element is the lattice element of Lind (plane, row,

centre) about which the twin operation is performed. The twin

elements are (pseudo)symmetry elements for the twin lattice

LT, which either coincides with Lind or is a sublattice of it. A

(pseudo)symmetry plane (hkl) is (quasi-)perpendicular to a

lattice row [uvw], and a (pseudo)symmetry axis [uvw] is

(quasi-)perpendicular to a lattice plane (hkl). From the group-

theoretical viewpoint, the twin operations correspond to the

cosets of D(LT) with respect to H�. When LT coincides with

Lind, twinning is by merohedry; this is subdivided into twinning

by syngonic merohedry, when K � DðHÞ, and twinning by

metric merohedry when K � DðHÞ (Nespolo & Ferraris,

2000.)3 If D(Lind) is close to a higher holohedry D0, the twin

operation may belong to a coset ofD0 with respect to DðHÞ: in

this case, D(LT) is taken to coincide with D0 and twinning is

by pseudomerohedry. LT then still extends throughout the

twinned edifice but has a slight deviation, corresponding to

the obliquity, at the composition surface (Donnay, 1940), and

because of this deviation is not, rigorously speaking, a Bravais

lattice. In both cases, the restoration of Lind is complete,
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1 The expression ‘non-merohedric twins’ is often used to indicate all twins but
those by merohedry. In this article, we use it in a slightly more restricted
meaning, to indicate twins with twin index >1. To emphasize that the
expression ‘non-merohedral twins’ often appearing in the literature is
inappropriate: ‘merohedral’ indicates the symmetry of an individual, not that
of a twin (Catti & Ferraris, 1976).
2 A sublattice is a lattice whose translation group is a subgroup of that of the
original lattice. The cell of the sublattice is thus a supercell of the original
lattice. In reciprocal space, the super–sublattice relations are inverted.

3 Friedel (1904, p. 143, 1926, pp. 56–57) stated that metric merohedry – which
he called ‘higher-order merohedry’ (mériédrie d’ordre supérieur) – was either
unlikely or equivalent to a pseudo-merohedry of low obliquity. Nowadays,
several examples of true metric merohedry (within experimental uncertainty)
are known.



although in the second case it is only approximate: one says

that the twin index is 1.

When LT is a sublattice of Lind the degree of (quasi-)

restoration of Lind is lower: twinning is by reticular merohedry,

the twin index n is higher than 1 and corresponds to the ratio

of the volumes of the primitive cells of the two lattices. If

D(LT) is close to a higher holohedry D0, the twin operation

may belong to a coset ofD0 with respect toDðH�Þ: in this case,

D(LT) is taken to coincide with D0 and twinning is by reticular

pseudomerohedry. Exactly as in the case of twinning by

pseudomerohedry, LT is not, rigorously speaking, a Bravais

lattice.

Without losing generality, the analysis of the relation

between LT and Lind to obtain the possible twin laws in non-

merohedric twins can be limited to the case where both the

twin and the individual are holohedral, and H� is centro-

symmetric. In other words, in the following we assume K =

D(LT), H = DðHÞ and H� = \iD(Lind)i. The derivation of the

twin laws is thus a matter of decomposing D(LT) in terms of

H
�: each coset obtained in this way contains an equal number

of operations of the first and of the second sort and the lattice

(quasi-)restoration can thus be described by rotation or by

reflection. This is equivalent to saying that, because a twin

element is a (pseudo)symmetry element of LT and because a

lattice is by definition centrosymmetric, there always exists a

rational element (quasi-)perpendicular to the twin element.

The cell of LT is finally defined by the pair (hkl)/[uvw]

composed of the twin element and the reticular element quasi-

perpendicular to it; the indices are expressed in the crystal-

lographic basis of Lind. The twin index is calculated as

n ¼ X=f

X ¼ juhþ vkþ wlj;
ð1Þ

where f = 1, 2 or 4 depending on the Bravais-lattice type and

the parities of X, u, v, w, h, k, l (see, for example, Nespolo &

Ferraris, 2005).4 When u, v, w, h, k, l are expressed in terms of

a primitive basis of Lind, f = 1 or 2 depending on whether X is

even or odd. The complete classification of twinning is given in

Table 1: for details of the classification, see Nespolo & Ferraris

(2004a) and Grimmer & Nespolo (2006). A coarser classifi-

cation was introduced by Donnay & Donnay (1974), who

distinguished between zero-obliquity twins (twin lattice

symmetry: TLS) and non-zero obliquity twins (twin lattice

quasi-symmetry: TLQS). The conditions of plane/direction

perpendicularity for each lattice system5 were given by

Donnay & Donnay (1959). In the cubic lattice system, each

lattice row [uvw] is perpendicular to the lattice plane with the

same indices (h = u, k = v, l = w); this implies a potentially very

high number of TLS twin laws but their actual occurrence is

limited by the fact that most of them would correspond to a

high twin index. For each twin plane (axis), the perpendicular

lattice element, defining the cell of LT, is thus immediately

obtained, and the obliquity is zero. In the other lattice systems,

only some pairs of lattice plane/direction are mutually

perpendicular because of the lattice symmetry, independently

from any metric parameter or the experimental conditions

(T,p), as far as these do not imply a transition to a different

lattice system. The mutually perpendicular pairs in each lattice

system of the three-dimensional space are summarized in

Table 2 (see Donnay & Donnay, 1959). When the cell of LT is

defined by a pair of lattice elements of this type, the obliquity

is necessarily zero: we propose to call this type of twinning
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Table 1
Classification of crystal twinning.

In the case of metric merohedry, the condition K � DðHÞ implies that the twin operation belongs to D(LT) but not to DðHÞ: the specialized metric has an
important effect on twinning because the twin operation belongs to the higher holohedry. On the other hand, syngonic merohedry is characterized by K � DðHÞ,
which implies that the twin operation belongs to DðHÞ.

Twin
index n

Obliquity
!

Relations among
D(LT), D(Lind), DðHÞ and H Extended classification Friedel’s classification

= 1 = 0 D(LT) = D(Lind) � DðHÞ � K � H Syngonic merohedry Merohedry
D(LT) = D(Lind) � DðHÞ; K � DðHÞ Metric merohedry

= 1 > 0 D(LT) � D(Lind) Pseudomerohedry Pseudomerohedry
> 1 = 0 D(LT) 6¼ D(Lind) Reticular merohedry Reticular merohedry

D(LT) = D(Lind) Reticular polyholohedry
> 1 > 0 D(LT) 6¼ D(Lind) Reticular pseudomerohedry Reticular pseudomerohedry

D(LT) = D(Lind)† Reticular pseudopolyholohedry

† This relation holds when considering the idealized LT, as usual in TLQS.

Table 2
Condition of lattice plane/direction mutual perpendicularity in the seven
lattice systems of the three-dimensional space.

See Table 1.3.2.1 in Koch (1999).

Lattice system Lattice plane Lattice direction

Triclinic – –
Monoclinic (b-unique) (010) [010]
Orthorhombic (100) [100]

(010) [010]
(001) [001]

Tetragonal (001) [001]
(hk0) [hk0]

Rhombohedral and hexagonal (0001) [001]
(hexagonal axes) (hki0) [2h+k,h+2k,0]

Cubic (hkl) [hkl]

4 The variable X in equation (1) is more commonly indicated as S. To avoid
any possible confusion with the lattice type S, we prefer to adopt here a
different letter.
5 For an explanation of the difference between lattice system and crystal
system, see Wondratschek (2002). In previous editions of International Tables
for Crystallography, lattice systems were called ‘Bravais systems’.



intrinsic TLS, shortened to i-TLS. In all other cases, the

conditions of perpendicularity, and thus the obliquity, depend

on one or more metric parameters (see, for example,

Grimmer, 2003; Grimmer & Kunze, 2004). In other words, a

pair of elements (hkl)/[uvw] may correspond to TLS or to

TLQS depending on the experimental conditions determining

the metric of Lind. We propose to call extrinsic TLS, shortened

to e-TLS, twinning in which the zero obliquity is not a

consequence of the symmetry of Lind but comes instead from

the particular metric of Lind. Evidently, the obliquity is exactly

zero in the case of i-TLS, whereas it is zero within the

experimental error in the case of e-TLS.

The direction [u0v0w0] perpendicular to a lattice plane (hkl)

and the plane (h0k0l0) perpendicular to a lattice row [uvw] are

obtained from the metric tensors G (in direct space) and G�

(in reciprocal space) (Grimmer & Nespolo, 2006; see also

Friedel, 1926; Donnay & Donnay, 1959):

ju0v0w0i ¼ G�jhkli ð2Þ

jh0k0l0i ¼ Gjuvwi: ð20Þ

If (hkl) is a (supposed) twin plane, one speaks of reflection

twin and [u0v0w0] is the direction perpendicular to it; if [uvw] is

a (supposed) twin axis, one speaks of rotation twin and (h0k0l0)

is the plane perpendicular to it. In general, [u0v0w0] and (h0k0l0)

are not rational;6 the angle between [u0v0w0] and the lattice row

[uvw], or between (h0k0l0) and the lattice plane (hkl), chosen to

form the (hkl)/[uvw] pair is the obliquity !, which is computed

in terms of [uvw] and [hkl]�:

cos! ¼
uhþ vkþ wl

LðuvwÞL�ðhklÞ
ð3Þ

where L(uvw) = huvw|G|uvwi1/2 and L�(hkl) = hhkl|G�|hkli1/2

are the periods of the corresponding directions (see Grimmer

& Nespolo, 2006).

2.1. Structure versus lattice in the general analysis of twins

The actual occurrence of a twin depends on both thermo-

dynamic and kinetic conditions (Buerger, 1945; Nespolo &

Ferraris, 2004b), the key factor being the structural match at

and near the composition surface. In some cases, the structure

match is realized only for part of the structure, especially large

atoms (Takeda et al., 1967): the twin is then well rationalized in

terms of a restoration index, defined similarly to the twin index

but concerning a subset of atoms instead of the lattice nodes.

The analysis of the structure at the boundary makes use of the

diperiodic groups (Holser, 1958) and requires the knowledge

of the structure in the orientations corresponding to the twin

individuals. Whatever approach one chooses to analyse the

structural aspects of twins, the study almost reduces to a case-

by-case analysis.

On the other hand, the reticular analysis of twins allows us

to abstract from the specificity of each structure by means of a

general concept, the twin lattice. Whereas this analysis cannot

explain all the observations on the occurrence frequency of

twins, it supplies nevertheless a general criterion to explain

and foresee most twins. In fact, a high degree of (quasi-)

restoration of lattice nodes is favourable to the formation of

twins (see e.g. Santoro, 1974) because it implies a good

continuity of the structural motif in the different non-

equivalent orientations of the individuals brought to (quasi-)

coincidence by the twin operations.

2.2. Non uniqueness of LT in TLQS

The experimentally observed (or theoretically expected)

twin law gives the twin plane (axis), which in turn defines the

cell of LT once the (quasi-)perpendicular lattice row (plane)

has been determined. In TLQS, the cell of LT can in principle

be chosen in different ways because, for a given twin plane

(axis), different quasi-perpendicular pairs (hkl)/[uvw] can be

found, the direction (plane) exactly perpendicular being

irrational. In other terms, unless the value of the obliquity is

known a priori from some experimental or theoretical

considerations, the choice of LT is not straightforward. For

example, the Breithaupt twin {11�221} in �-quartz was described

in two different ways by Friedel (1923), who used the pair

(11�221)/[552] in the table on page 92 because of the lower

obliquity but eventually opted for the pair (11�221)/[221] in the

text because of the lower twin index.

If the obliquity is known, for example estimated from the

separation of split diffractions, it can be used as a minimal

value of ! to be accepted during the exploration of the (hkl)/

[uvw] pairs: for this reason, the algorithm described below

requires in input an !LL (lower limit) value. The exploration of

the direct space for pairs of quasi-perpendicular (hkl)/[uvw] is

done between !LL and !UL (upper limit); when the obliquity is

unknown, !LL is set to zero and instead an internal criterion

has to be applied for the choice of LT. Different lattice rows

(planes) quasi-perpendicular to the twin element may corre-

spond to largely different twin indices and this difference

simply rules out all but one candidate. When such a clear-cut

situation does not exist, the quasi-perpendicular pair defining

LT is not evident and different choices are then possible: the

choice of a threshold is described in x4.1.

2.3. Hybrid twinning

From the lattice viewpoint, a twin operation brings to

(quasi-)superposition rational directions that are not equiva-

lent – all or part – under H: along these directions, the

structure must fit sufficiently well in order to obtain a crys-

talline edifice. The degree of lattice (quasi-)restoration is

inversely related to the twin index and the obliquity; a large

part of known non-merohedric twins correspond to low ob-

liquity and low twin index, the empiric limiting values being 6�

for the obliquity and 6 for the twin index (Friedel, 1926). Twins

that correspond to this criterion are called ‘Friedelian twins’

(Nespolo & Ferraris, 2005).

A number of examples of non-Friedelian twins are known,

which are hardly understandable on the basis of the classical

reticular theory. Actually, many of them can again be
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Mallard’s law (Friedel, 1926) states that a twin element must be a lattice
element in direct space.



rationalized in terms of the lattice (quasi-)restoration,

provided the classical approach is extended to consider the

coexistence of N quasi-restored sublattices Li, i = 1, . . . , N.

These concurrent sublattices correspond to the same twin law,

are defined by different pairs (hkl)/[uvw], all based on the

common twin element and differing for the quasi-perpen-

dicular lattice element, and show different degrees of quasi-

restoration. Among the N concurrent sublattices, the one

corresponding to the lowest obliquity defines LT and is here-

after taken as first sublattice in the numbering of sublattices:

L1 = LT. In TLS, the lowest obliquity is zero, whereas in TLQS

it is not defined a priori because, as discussed in the previous

section, the choice of LT may not be straightforward. When the

user gives a non-zero value of !LL, the search for concurrent

sublattices is limited to !lowest 	 !LL; when there is no

experimental estimation of !LL, alternative criteria to end the

exploration of sublattices are used instead, and are described

in x4.1. The concurrent sublattices can be found by searching

for all the elements of Lind that are quasi-perpendicular to

the twin element, where ‘quasi’ means within the accepted

obliquity. The nature of the twin element is not affected: it is

only the description of the lattice quasi-restoration that

changes when considering concurrent sublattices.

The indices u0v0w0 (or h0k0l0) of the direction (or plane)

perpendicular to the twin element can always be brought –

with some numerical tolerance – to coprime integers uvw (or

hkl) but the values obtained in this way may be so high that

they simply do not correspond to a rational element. Even

when they do, however, the corresponding twin index may be

too high and represent thus a negligible degree of lattice

(quasi-)restoration. The latter should take into account all

nodes that are quasi-restored in the range of the accepted

obliquity (!LL! !UL), not only those that are restored within

the lowest obliquity (! = 0 in TLS). When more than one

quasi-restored concurrent sublattices Li exist in the !LL !

!UL range, the classical twin index represents only a first

approximation of the overall degree of lattice quasi-restora-

tion. In fact, the lattice element (direction/plane) corre-

sponding to the lowest obliquity may define a rather large cell

for LT. In a case like this, to describe the degree of lattice

quasi-restoration by means of only one sublattice actually

means to underestimate it.

To address this category of twins, we have recently intro-

duced the definition of hybrid twins as twins in which more

than one quasi-restored concurrent sublattices exist for ! <

!UL (Nespolo & Ferraris, 2005). In our previous study, the

overall degree of lattice quasi-restoration was described by up

to three concurrent sublattices:

1. LT, corresponding to the lowest obliquity;

2. the first alternative sublattice (LA), based on the twin

element under consideration and an alternative quasi-

perpendicular element;

3. the second alternative sublattice (LB), based on the

(quasi-)perpendicular element of LT and an alternative twin

element.

To measure the degree of lattice quasi-restoration, we

introduced the concept of effective twin index nE, which is a

function of the twin indices of the three concurrent sublattices.

The effective twin index as defined by Nespolo & Ferraris

(2005) represents a better approximation of the degree of

quasi-restoration than the classical twin index but it does not

correspond yet to the full set of quasi-restored nodes. In fact, it

takes into account only the sublattice corresponding to the

lowest obliquity and that corresponding to the lowest twin

index for ! < !UL. The introduction of the LB sublattice was

aimed at improving the degree of approximation, but in some

cases it may turn out to give misleading results: for example,

the LB sublattice of the Belowda Beacon twin in �-quartz

would correspond to the pair (10�111)/[211], which on the other

hand defines the LT sublattice of the Esterel twin. For all these

reasons, we proceed to refine the definition of the effective

twin index before presenting the computation algorithm.

3. Choice of concurrent sublattices and definition of
the effective twin index

The following analysis is applied starting from the standard

primitive cell of the individual [the one obtained from the

conventional cell by the transformations in Arnold (2002)].

The two parameters n and ! (twin index and obliquity)

define a two-dimensional region, whose boundaries are fixed

by the largest acceptable twin index nmax and by the lower and

upper limits on the obliquity, !LL and !UL. It is in this region

�(nmax,!LL!!UL) that sublattices have to be found. Let � be

the integer number of points in the �(n,!) region that

correspond to sublattices. For a given twin element, � 	 0;

when � = 0, the lattice element under investigation is not a

possible twin element for a triperiodic twin, at least within the

fixed boundaries. The direction in �(n,!) corresponding to

the lowest ! defines the cell of LT; other directions – if any –

corresponding to the same n but to a higher ! are not taken

into account because the first node along such a direction is

external to the cell of LT. The degree of (quasi-)restoration of

the lattices of the individuals is measured by the fraction of

nodes of this cell that are approximately restored by the twin

operation, where ‘approximately’ means within !UL. The

totality of quasi-restored nodes are those belonging to the

cells represented by points in the �(nmax,!LL!!UL) region.

Because the choice of nmax and !UL is a priori without

constraints, the degree of lattice quasi-restoration and the

value of � in principle are not uniquely defined: by enlarging

the �(n,!) region a different result may be found. This is

typically what happens when analysing a high-index twin: one

passes from � = 0 in the Friedelian region �(6,6�) to � > 0 in a

larger region �(n>6,6�). Even in the Friedelian region

�(6,6�) some twins actually show � > 1: this means that the

sublattice normally chosen to describe LT corresponds to the

lowest value of either n or !, but not of both; there is then at

least another sublattice whose contribution to the lattice

quasi-restoration is not negligible. In cases like this, the

description as hybrid twin gives a better account of the overall

degree of lattice quasi-restoration.

The number of points � in �(n,!) depends on the choice

of !UL; this parameter is however limited to physically
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meaningful values. In fact, a non-zero value of the obliquity

means that the farther we move from the composition surface

separating the individuals the more approximate is the lattice

quasi-restoration. If the obliquity is high, the lattice mismatch

becomes more severe also in proximity to the composition

surface. Once the � concurrent sublattices in �(n,!) have

been located, the overall degree of lattice quasi-restoration is

measured by the ratio between the multiplicity of the cell of LT

and the number of lattice nodes in this cell that belong to the

Li concurrent sublattices. These (quasi-)restored nodes define

the effective twin index nE. An estimation of nE is given by the

following expression:

hnEi ¼
X1P�

i¼1 intðX1=XiÞfi;
ð4Þ

where Xi and fi are the values of X and f in equation (1) for the

ith sublattice and int(x) is the integer part of x. Actually,

equation (4) gives the fraction of nodes of Lind in the cell of LT

belonging to the � concurrent sublattices found in �(n,!) and

represents the lower limit of nE. In some cases, a quasi-

restored node may belong to two different sublattices, and the

effective twin index may thus be slightly larger than the esti-

mation obtained by equation (4): we will discuss this point

when analysing some examples (see xx4.3.2 and 5.8).

Equation (4) is a generalization of the original definition

introduced by Nespolo & Ferraris (2005): in the previous

definition, the calculation of the effective twin index was

straightforward and the algorithm did not include any risk of

counting a node more than once. In the present extension,

which aims at obtaining a more precise estimation of the

actual degree of quasi-restoration of lattice nodes in hybrid

twins, such a possibility exists, although only in special cases,

and has to be taken into account in the calculation of nE.

For a lattice element supposed to give rise to a non-mero-

hedric twin, the following three cases may arise:
* � = 0: the lattice element under investigation is not a

possible twin element for a triperiodic twin, at least within

nmax,!UL;
* � = 1, nE = n: there is only one sublattice within nmax, !UL

and the twin is non-hybrid; if n and ! are within the classical

limits (6,6�) the pair (hkl)/[uvw] represents a Friedelian twin; if

n and ! are not within the classical limits (6,6�) the pair (hkl)/

[uvw] represents a non-Friedelian twin which cannot be

explained as hybrid;
* � > 1: the twin is hybrid, and its description as classical

twin (� = 1) is only an approximation; the degree of

approximation can be estimated by the difference between n

and nE.

4. Exploring the K(n,x) region

The algorithm used in the program GEMINOGRAPHY to

explore the �(n,!) region is described in this section. A

schematic flowchart of the computation process is shown in

Fig. 1.

For a given metric, defined by the lattice parameters, a user-

defined twin element (hkl) or [uvw] is analysed within the

user-chosen region �(nmax,!LL!!UL). It is also possible to

explore intervals of hkl or uvw: this is useful to search for

possible twin elements in a given Lind. The value of nmax must

be definitely higher than the classic Friedelian value, otherwise

most hybrid twins will not be found and the result will be

simply � = 0 or 1. For TLS twins, the cell of LT is uniquely

defined by the pairs (hkl)/[uvw] corresponding to zero ob-

liquity. In the case of i-TLS, the value of nmax itself is imposed

by the perpendicularity of these elements: it is automatically

set at X/f, which overcomes the user-defined value, !LL is also

set to zero. For e-TLS, the cell of LT is defined by the pairs

corresponding to ! = 0; but, because the perpendicularity of

these elements depends on at least one metric parameter, a

tolerance on the zero obliquity is introduced. For TLQS, the

user-defined minimal value of the obliquity, !LL, is used as a

threshold to end the exploration when a direction making an

obliquity lower than the one experimentally determined is

reached. When an experimental estimation of the obliquity is

not available, the default value of zero is used for !LL and a

different threshold criterion, described below, is then used.
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Figure 1
Schematic flowchart of the computation algorithm. For i-TLS twins, the
computation is performed in one step, by taking � = nmax = X/f and
!LL = 0.



The �(n,!) region is explored at once for i-TLS, and step-

by-step for e-TLS and TLQS, the step pointer being hereafter

indicated by �. The perpendicular elements (h0k0l0) or [u0v0w0]

are computed by means of equation (2) or (20): these are in

general irrational planes/directions. The rational elements

close to (h0k0l0) or [u0v0w0] are then obtained, within the region

�(�,!LL!!UL): their number is ��. Not all these elements are

however independent: redundant elements must be eliminated

to obtain the final value of ��, which is then stored, together

with the effective twin index at the �th step, nE,�.

As discussed above, in TLQS twins the cell of LT may not be

uniquely defined: the pair defining the cell of LT within a given

�(n,!) region becomes one of the alternative pairs within a

larger �(n,!) region. The consequence is that the degree of

lattice quasi-restoration increases monotonously and, conse-

quently, the effective twin index decreases. This increase in ��
is however not always meaningful: for a given obliquity, the

linear separation between quasi-restored nodes increases with

the distance from the composition surface.

To overcome this problem, two options are left to the user.

1. To choose a non-zero value of the minimal obliquity !LL

below which the pairs (hkl)/[uvw] are not accepted as possible

cells for LT. This is the case when the obliquity is known or

supposed. The algorithm is then used to look for possible

hybrid contributions. If the twin element under consideration

corresponds to i-TLS, !LL is forced to zero.

2. To allow the program optimizing the description of the

lattice overlap by means of the algorithm described in the next

section, which concerns TLQS twins analysed with !LL = 0.

4.1. Choice of LT for xLL = 0 in TLQS

In general, �� does not increase continuously at each

increment of � but may remain constant in more or less large

subregions. In other words, the change between two given

values of � may occur in several steps, each step involving a

small increment in the � region, or in one step, corresponding

to a large increment of �. In the first case, each widening of

the � region corresponds to a better approximation by nE of

the real degree of lattice overlap. In the second case, the

additional points found in the larger � region correspond to

contributions from nodes away from the composition surface

and their physical meaning is thus negligible. In the case of

reflection twins, let the period along the direction [uvw]

defining the primitive cell of LT at the step � be �[uvw],�: if [uvw]

defines a centred cell, the corresponding primitive direction is

used to compute �[uvw]. The ratio �[uvw],�/�[uvw],�-1 is taken as a

threshold to stop the exploration: once outside the Friedelian

region (n > 6), when this ratio is higher than a given threshold,

the increase in the number � of concurrent sublattices

concerns lattice vectors sufficiently far from the composition

surface for their contribution to be negligible. An empirical

value of 1.5 for the threshold has shown to work well for all the

cases analysed so far. If this limit is not reached during the

whole exploration, the �(n,!) region indicated by the user

may be too narrow: a warning is then printed.

For rotation twins, d(hkl)�
1/d(hkl),� is used as threshold. The

smaller is d(hkl), the lower is the density of nodes in the plane

defining the jth sublattice Lj. Outside the Friedelian region

(n > 6), when the above ratio is higher than 1.5, the increase in

the number � of concurrent sublattices concerns lattice

planes of sufficiently low density for their contribution to be

negligible.

4.2. Derivation of the quasi-perpendicular lattice elements

For each (hkl), the perpendicular direction [u0v0w0] is

computed by means of equation (2); in the case of rotation

twins, (h0k0l0) is computed in terms of [uvw] by means of

equation (20). The algorithm works similarly on both rotation

and reflection twins and one does not need to distinguish them

at this stage; let us indicate the result as e1, e2, e3. The algor-

ithm proceeds as follows. An index ej is considered to be a

‘quasi-integer’ if its mantissa is lower than 0.1 or higher than

0.9.

1. When e1, e2, e3, are not quasi-integers – that is the general

case – they are first of all normalized to the smallest of the

three (emin): the smallest ej is now 1. If the two others are

quasi-integers, the process jumps to step 3.

2. Let mj be the mantissa of ej; the three ejs are normalized

to the largest mj and the process is repeated until all the three

ejs are quasi-integer, or until n� – the twin index computed at

the �th iteration step by taking the integers closest to ejs – is

larger than the limit given in input by the user (nmax).

3. The rational elements whose indices are closest to e1e2e3

are computed by adding 0 � 0.5 to each ej in all possible

combinations. The �0.5 addition justifies considering as

‘quasi-integer’ an ej differing from an integral value by no

more than 0.1. For each element obtained in this way, n and !
are computed. If they correspond to a point in the �(n,!)

region, then the corresponding element is stored.

4. The ejs are divided by (1 + mmax), where mmax is the

largest of the three mantissas. Iteration between steps 3 and 4

continues until the smallest ej is lower than 1. In this way, the

whole set of rational elements close to the one found at step 2

is analysed.

5. The pairs (hkl)/[uvw] obtained above are analysed. If no

pair has been stored, then the element under consideration is

not a possible twin element in the �(n,!) region under

investigation (� = 0). Otherwise, the pair corresponding to the

lowest obliquity and to the lowest n with the same ! is

retained and defines the LT sublattice at step �.

4.3. Redundancy elimination and calculation of the effective
twin index

At each step �, the set of �� quasi-perpendicular lattice

elements is checked for consistency to avoid counting more

than once a sublattice or a lattice node.

4.3.1. Elimination of the redundant pairs. In some cases, it

may happen that the exploration of the �(nmax,!LL!!UL)

region leads to counting the same sublattice more than once.

This is for example the case of reflection twins when the ith
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pair (hkl)/[uiviwi] defines a centred cell and the centring

vector is parallel to the [ujvjwj] vector defining the cell of the

jth pair (hkl)/[ujvjwj] (i 6¼ j). For this reason, the set of quasi-

perpendicular pairs obtained from the exploration of

�(nmax,!LL!!UL) is analysed to eliminate multiple sublat-

tice counts.

For reflection twins, Li is based on the twin plane (hkl) and

on the ith quasi-perpendicular direction [uiviwi]. The elim-

ination of redundant pairs is performed by comparing the

corresponding primitive cells, which are obtained as follows.

1. A provisional cell is built, based on the primitive mesh in

(hkl) corresponding to the two shortest in-plane vectors

corresponding to the directions [uAvAwA] and [uBvBwB] and

the quasi-perpendicular direction [uiviwi]. Because the mesh in

(hkl) is primitive, the value of f = X/n for this cell can be only

1 or 2. If f = 1, the cell is primitive and computation jumps to

step 3.

2. If f = X/n = 2, the cell is of type S or I; the corresponding

primitive cell is obtained by computing the indices of the three

directions [ui + uA,vi + vA,wi + wA], [ui + uB,vi + vB,wi + wB]

(for S centring) and [ui + uA + uB,vi + vA + vB,wi + wA + wB]

(for I centring). Only one of these three triples has all-even

values: it identifies the centring vector, whose coordinates uvw

are half the all-even indices found in this way.

3. The node corresponding to the vector defining the

primitive cell of Li, whose coordinates uvw have been

obtained in the previous steps, is stored together with its eight

neighbours obtained by adding and subtracting the vectors

defining the primitive mesh in (hkl) as well as their vector

sum: u � uA,v � vA,w � wA, u � uB,v � vB,w � wB and

u � uA � uB,v � vA � vB,w � wA � wB.

4. The nodes obtained in this way are compared one-to-one:

if the same node occurs in correspondence of more than one

Li, only the sublattice with lower index is retained.

For rotation twins, the same analysis is applied in the re-

ciprocal space by exchanging the role of planes and directions.

Because of the relations of reciprocity of lattice types, if the

reciprocal of a cell contains nodes belonging to another cell,

the same is true also for the original cell.

4.3.2. Elimination of the redundant nodes and calculation
of nE. Once the set of the � independent pairs has been

established, the number of nodes of Lind that are quasi-

restored by the twin operation and that are internal to the cell

of LT is calculated. To do this, three lattice directions are used

for each sublattice Li:
* for reflection twins, the two directions defining a primitive

mesh in the twin plane, [uP
AvP

AwP
A] and [uP

BvP
BwP

B], and the ith

quasi-perpendicular direction [uP
i vP

i wP
i ];

* for rotation twins, the twin axis [uP
1 vP

1 wP
1 ] and two direc-

tions defining a primitive mesh in the ith quasi-perpendicular

plane [uP
A;iv

P
A;iw

P
A;i] and [uP

B;iv
P
B;iw

P
B;i].

For each triple of directions, the corresponding nodes and

their neighbours are searched and stored:
* for reflection twins, stored nodes are: uP

i vP
i wP

i ;

uP
i � uP

A; vP
i � vP

A;wP
i � wP

A; uP
i � uP

B; vP
i � vP

B;wP
i � wP

B;

uP
i � uP

A � uP
B; vP

i � vP
A � vP

B;wP
i � wP

A � wP
B;

* for rotation twins, stored nodes are: uP
A;i; vP

A;i;wP
A;i;

uP
B;i; vP

B;i;wP
B;i; uP

A;i � uP
1 ; vP

A;i � vP
1 ;wP

A;i � wP
1 ;

uP
B;i � uP

1 ; vP
B;i � vP

1 ;wP
B;i � wP

1 ;

uP
A;i � uP

B;i; vP
A;i � vP

B;i;wP
A;i � wP

B;i;

uP
A;i � uP

B;i � uP
1 ; vP

A;i � vP
B;i � vP

1 ;wP
A;i � wP

B;i � wP
1 .

If the cell of Li is of type S or I, a further set of nodes,

obtained from the centring node uCvCwC, is added too.

The cell of LT contains m = int(X1/Xi) cells of the ith

sublattice. Therefore, the following nodes are added to the set

obtained above:
* for reflection twins, the nodes j� uP

i ; j� vP
i ; j� wP

i and

j� uC;i; j� vC;i; j� wC;i, as well as their neighbours, j taking

values from 2 to m;
* for rotation twins, the nodes j� uP

A;i, j� vP
A;i, j� wP

A;i;

j� uP
B;i, j� vP

B;i, j� wP
B;i; j� uC;i, j� vC;i, j� wC;i, as well as

their neighbours, j taking values from 2 to m.

The set of nodes obtained in this way is re-indexed in the

cell of LT by applying the transformation

uP
A;1 uP

1
uP

B;1

vP
A;1 vP

1
vP

B;1

wP
A;1 wP

1
wP

B;1

2
4

3
5

1

u v w
�� �

Lind
¼ u v w
�� �

L
T

: ð5Þ

Only the nodes |uvwiLT
having all the three coordinates non-

negative and less than 1 are in the cell of LT. Among these, if a

node occurs twice or more, it is counted only once. The

effective twin index nE is finally obtained by dividing the

multiplicity of the cell of LT by the number of nodes obtained

in this way.

4.4. Analysis of the pseudosymmetry of the twin lattice

The analysis of the symmetry of a lattice is a straightforward

task best accomplished via the metric tensor (see e.g. Mighell

& Rodgers, 1980). In the case of twins, however, we are more

interested in the pseudosymmetry of LT rather than in its true

symmetry. In fact, to say that a (sub)lattice Li is restored

within a given obliquity ! implicitly means that the symmetry

of that sublattice, D(Li), is close to a higher holohedry D0, the

discrepancy being at most !. The proximity of the linear

parameters is also important in evaluating the pseudosym-

metry of a (sub)lattice. For example, an orthorhombic crystal

with a numerically close to b may undergo twinning by �90�

rotation about the c axis. The twin law is the coset obtained

when decomposingD(LT) = 4/mmm in terms ofDðHÞ = mmm,

and – from the view point of the lattice – any of the eight

operations in this coset (including the operation 4[001] for

which the obliquity is zero)7 may be taken as twin operation.

In a case like this, LT coincides with Lind within |a 
 b|.

The (pseudo)symmetry of LT is analysed starting from the

transformation matrix relating Lind and LT. Because the pair

(hkl)/[uvw] is quasi-perpendicular (within !UL), LT is at least

pseudomonoclinic. In terms of the primitive cell, the trans-

formation is straightforward:
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a b c
� ��

LT
¼ aP bP cP
� ��

Lind
UP

T; UP
T ¼

uP
A uP

T uP
B

vP
A vP

T vP
B

wP
A wP

T wP
B

2
4

3
5:

ð6Þ

The same transformation is obtained from the conventional

cell (the cell normally given in input by the user) by consid-

ering the coordinates xAyAzA, xByBzB and xTyTzT (which can

be fractional) of the first node along the corresponding

directions in the conventional mesh in (hkl) and along the

direction quasi-perpendicular to the (hkl) plane. The trans-

formation from Lind to LT is then obtained from

a b c
� ��

LT
¼ a b c
� ��

Lind
UT; UT ¼

xA xT xB

yA yT yB

zA zT zB

2
4

3
5:

ð60Þ

If mind and mT are the multiplicities of the conventional cells of

Lind and of LT, respectively, and |UT| is the determinant of the

transformation matrix UT, the twin index is simply n =

|UT| � mind/mT.

The computed obliquity is assumed to be an angular

tolerance on the metric symmetry of LT, whereas the tolerance

on the linear parameters is chosen by the user. The evaluation

of the pseudosymmetry of LT is described by the following

examples.

1. If the obliquity of the sublattice is 1.5� and LT is mono-

clinic with �  91.5�, LT is considered pseudo-orthorhombic,

whereas it is considered monoclinic if � > 91.5�.

2. If LT is orthorhombic with |a 
 b|  t, where t is the

tolerance adopted by the user, then LT is considered pseudo-

tetragonal.

The type of centring of LT is also evaluated as follows, starting

from the primitive cell of Lind (Grimmer & Nespolo, 2006):

1. if uP
A þ uP

T, vP
A þ vP

T, wP
A þ wP

T are all even, the lattice is

C-centred;

2. if uP
B þ uP

T, vP
B þ vP

T, wP
B þ wP

T are all even, the lattice is

A-centred;

3. if uP
A þ uP

B, vP
A þ vP

B, wP
A þ wP

B are all even, the lattice is

B-centred;

4. if the three conditions above are all satisfied, the lattice is

F-centred;

5. if uP
A þ uP

B þ uP
T, vP

A þ vP
B þ vP

T, wP
A þ wP

B þ wP
T are all

even, the lattice is I-centred.

If the result is a non-standard setting (e.g. a-unique mono-

clinic lattice, mA or mB lattices etc.), the transformation to a

standard setting is applied.

The same analysis can be applied to the other � 
 1

concurrent sublattices.

5. Examples

A few examples are analysed with some details in this section.

These are all taken from mineral structures because of the

large number of detailed descriptions of twins available in the

literature for this category. Obviously, the analysis applies as

well to any kind of triperiodic crystalline compound. Cell

parameters have been taken from http://www.webmineral.

com/.

5.1. The {052} twin in pyrite and galena

The analysis of this twin was presented in Nespolo &

Ferraris (2005)8 on the basis of the previous definition of nE.

The generalized definition we have introduced here implies a

minor modification of the lattice interpretation of this twin.

Pyrite, FeS2, has space group Pa�33, a = 5.417 Å. Besides the

common spinel law {111}/h111i, twin index 3, Smolař (1913)

reported several other twins, some of which are definitely non-

Friedelian. Because the lattice of pyrite is cubic, twinning is

always i-TLS and the cell of LT is uniquely defined by {hkl}/

hhkli. The parameter nmax is also uniquely defined by X/f:

there is no need to explore a region larger than �(X/f, !UL)

because the sublattice corresponding to zero obliquity is

defined a priori.

The {052} twin has n = 29 and ! = 0: the cell of LT is defined

by the directions [052], [02�55] and [100]: LT is obviously

tetragonal, and twinning is by reticular merohedry. In the

exploration for concurrent sublattices, the region to be

analysed is �(29,!), where ! is here taken equal to the

Friedelian limit of 6� as usual. In �(29,6�), besides [052] two

other directions quasi-perpendicular to (052) exist: [021] and

[031], for which n = 6, ! = 4.8� and n = 17, ! = 3.4�, respec-

tively. These three contributions give nE = 4.8, which coincides

with the estimation [equation (4)]: 29/(1 + 4 + 1). When

interpreted as a hybrid twin, the {052} twin in pyrite comes out

to have an effective twin index within the Friedelian limit.

Fig. 2 shows the (100) plane of Lind and the corresponding

projection of the cells LT, L2 and L3, based on the (052)/[052],

(052)/[021] and (052)/[031] pairs, respectively: the cell of L2 is

centred S, the others are primitive. [02�55] is the direction

representing the trace of the (052) plane on (100). White, blue

and red nodes belong to LT, L2 and L3, respectively; black

nodes belong to Lind only. The cell of LT passing through the

twin plane contains one node of LT, four nodes of L2 and one

node of L3 that are thus restored or quasi-restored by the twin

operation. The fraction of nodes of Lind that are (quasi-)
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Table 3
Analysis of the {012} twin in forsterite as a function of � in �(�, 6�).

� �� [hkl] n ! nE �[uvw]�/�[uvw]�
1

1–9 0 – – – – –
10 1 [029] 10 4.4 10.0 –
11 2 [015] 11 2.5 5.5 1.002

[029] 10 4.4
12 3 [0,2,11] 12 0.9 4.0 1.15

[015] 11 2.5
[029] 10 4.4

13–24 4 [016] 13 0.5 3.2 1.031
[0, 2, 11] 12 0.9
[015] 11 2.5
[029] 10 4.4

8 Table 1 in Nespolo & Ferraris (2005) contains an evident typo: the obliquity
of the alternative sublattices of the pyrite twin is 4.8, as discussed in the text,
and not 5.5.



restored by twinning is thus 29/(1 + 4 + 1) = 4.8, namely the

effective twin index.

The same twin has been reported in galena, which however

has a cF lattice type (Fm�33m, a = 5.936 Å) instead of cP as in

the case of pyrite. As a consequence, for L2 (052)/[021], we

have n1 = 12 instead of 6 and thus int(X1/X2) = int(29/12) = 2,

nE = hnEi = 29/(1 + 2 + 1) = 7.2. The cell of LT is centred I, the

cells of L2 and L3 are centred S.

5.2. The {012} twin in forsterite

Forsterite, Mg2SiO4, has space group Pbnm, a = 4.756, b =

10.195, c = 5.981 Å. In the literature, the {012} twin is reported,

for which n = 13 (Palache et al., 1952), whose geminographical

analysis is given in Table 3. This twin has � = 0 up to �(9,6�): it

is clearly a non-Friedelian twin, which cannot be explained

when adopting a limit on the twin index as high as 9. The

number of concurrent sublattices increases regularly from

�(10,6�) to �(13,6�), passing from � = 1 to � = 4, with a

corresponding decrease in the effective twin index from 10.0

to 3.2: the direction defining the cell of LT in �(13,6�) is [016].

No further change is observed up to �(24,6�). It is only at

�(25,6�) that new contributions appear: the direction defining

the cell of LTwould be [0,4,23] but the ratio �[0,4,23]/�[016] is 1.95

(�[0,4,23] = 72.59, �[016] = 37.31 Å), showing that the new

contributions would play a role only within a very large cell,

with quasi-restored nodes far from the composition surface.

This big gap clearly indicates that the best description of the

(012) twin in forsterite is obtained by considering the � = 4

sublattices in the �(13,6�) region.

The conventional mesh in (012) is defined by the two

directions [02�11] and [100] that, together with [016], define a

monoclinic primitive c-unique, pseudo-orthorhombic cell with

parameters a = 21.249, b = 37.306, c = 4.756 Å, � = 90.49�. The

transformation to the b-unique setting is thus obtained by

a b c
� ��

LT
¼ a b c
� ��

Lind
U; U ¼

0 
1 0

2 0 1


1 0 6

2
4

3
5:

LT is pseudo-orthorhombic but differently oriented relatively

to Lind, twinning is thus by reticular pseudo-polyholohedry9.

5.3. High-index twins in b-quartz

Drugman (1927, 1928, 1930, 1939) performed a systematic

study of twins in �-quartz and reported several examples of
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Table 4
Interpretation of the high-index twins in �-quartz.

Exploration done in �(4–40, 6�) for all twins but the Pierre-Levée, for which the region explored was �(4–40, 7�) because of the high obliquity of L3. In bold type,
Friedel’s interpretation of the twin. See text for details.

Twin name Breithaupt Belowda Beacon Wheal Coates Cornwall Pierre-Levée

Twin law {1121} {3032} {2131} {2021} {2133}
�(�min,!) �(6, 6�) �(4, 6�) �(17, 6�) �(7, 6�) �(10, 7�)
LT (11�22�11)/[552] (30�332)/[211] (21�331)/[431] (20�221)/[632] (21�333)/[544]

Twin index 6 4 6 7 13
Obliquity 0.7� 4.7� 2.9� 1.5� 2.1�

L2 (11�221)/[221] – – – (21�333)/[433]
Twin index 5 – – – 10
Obliquity 4.4� – – – 2.3�

L3 – – – – (21�333)/[322]
Twin index – – – – 7
Obliquity – – – – 6.5�

Effective twin index nE 3.0 4.0 6.0 7.0 4.3

Figure 2
Interpretation of the {052} twin in pyrite as hybrid twin. The figure shows
the (100) plane, which contains the direction [02�55] belonging to the twin
plane and the three directions [021], [052] and [031] that are (quasi-)
perpendicular to the twin plain (052). The white, blue and red nodes are
(quasi-)restored, within ! = 6�, by the twin operation. The cell of LT is
univocally defined by the i-TLS character of this twin and is identified by
the white nodes. This cell contains four blue nodes, belonging to the cell
defined by the (052)/[021] pair, and one red node, belonging to the cell
defined by the (052)/[031] pair. The overall degree of lattice quasi-
restoration is 29/(1 + 4 + 1) = 4.8, and this is the effective twin index nE

for the {052} twin of pyrite.

9 Reticular polyholohedry corresponds to the case in which the point
symmetries of LT and Lind coincide but the two lattices have different
orientations (see Nespolo & Ferraris, 2004a).



high-index twins. As shown in Table 4, two of these twins are

better interpreted as hybrid twinning.

The Breithaupt twin {11�221} is a Friedelian twin that is better

described as a hybrid twin, with two concurrent sublattices: LT,

defined by (11�221)/[552], and L2, defined by (11�221)/[221]. The

effective twin index is 3.0. Either LT or L2 alone would suffice

to describe this twin as Friedelian. The first sublattice is the

one that would most naturally be chosen from inspection of

the diffraction pattern. As anticipated in the x2.2, Friedel

(1923) used both pairs in the same article but when both

sublattices are considered together one obtains a better

description of the lattice quasi-restoration.

The Belowda Beacon twin {30�332} is a Friedelian twin with

twin index 4 and obliquity 4.7�, the quasi-perpendicular

direction being [211]. No hybrid contribution exists up to

�(15,6�), where the quasi-perpendicular direction would be

[843] (n = 15, ! = 2.2�). The large gap from the �(4,6�) region

clearly shows that this is not a hybrid twin: in fact, �[843]/�[221] =

2.124. The same type of argument applies to the Wheal Coates

twin {21�331} and the Cornwall twin {20�221}.

The Pierre-Levée twin {21�333} is not Friedelian. Drugman

(1928) did not give the quasi-perpendicular direction but

described this twin as having an index much larger than

usual:10 this suggests Drugman’s choice of the pair (21�333)/

[544], corresponding to n = 13 and ! = 2.1�. However, not far

from [544], two alternative rational directions exist: [433] and

[322], which correspond to indices 10 and 7, respectively. The

last direction has a slightly non-Friedelian obliquity (6.5�) but

its contribution to the hybrid twin is hardly deniable. If we

take the pair (21�333)/[544] as the one defining the LT sublattice,

the overall degree of lattice restoration increases to nE = 4.3, a

Friedelian value. Further sublattices would appear only in

correspondence of [977], with ratio �[977]/�[544] of 1.6.

5.4. The {104} twin in pyrargyrite

Pyrargyrite, Ag3Sb3, has space group R3c, a = 11.047, c =

8.719 Å. Palache et al. (1952) describe a {104} twin which

would correspond to a non-Friedelian twin with n = 7, ! = 0.5�

if only the lowest obliquity direction, [2,1,10], were consid-

ered. Not far from this direction another one exists, [217],

which makes 4.6� with the normal to (104) and defines a

sublattice with n = 5. Taken together, these two concurrent

sublattices define a hybrid twin with effective twin index 3.5.

No further sublattices exist in a region as wide as �(30,6�).

The LT sublattice is mC pseudo-orthorhombic, with param-

eters a = 13.083, b = 11.047, c = 29.755 Å, � = 90.46�. Twinning

is by reticular pseudomerohedry. The L2 sublattice is mI

pseudo-orthorhombic, with parameters a = 21.321, b = 11.047,

c = 13.083 Å, � = 94.57� and corresponds again to twinning by

reticular pseudomerohedry.

5.5. Diaphorite twins

Diaphorite, Pb2Ag3Sb3S8, is a pseudo-orthorhombic sulfo-

salt with space group C21/a, a = 15.84, b = 32.08, c = 5.9 Å, � =

90.165�. Two twins have been reported in diaphorite (Palache

et al., 1952): {120} and {241}. The first one is a normal Frie-

delian twin with n = 4 and ! = 0.7, the quasi-perpendicular

direction being [210]. The second twin is a hybrid twin that we

analyse with some details.

Up to �(6,6�), no quasi-perpendicular direction to (241)

exists, within 6� of obliquity, The first quasi-perpendicular

lattice row occurs in �(7,6�): it is [216], for which n = 7 and ! =

5.6�. At this stage of description, the twin is simply non-

Friedelian. Not far from this direction, another quasi-

perpendicular lattice row exists, [218], for which n = 8 and ! =

2.7�. The period along these two directions is �[218] = 36.04 and

�[216] = 31.94 Å, the ratio �[218]/�[216] being 1.13.

No further sublattices are found in the region �(9–14,6�).

However, in correspondence of �(15,6�), the lattice direction

making the smallest obliquity becomes [217], which corre-

sponds to (n = 15, ! = 1.4�). The corresponding period is

�[216] = 61.08 Å. If [217] is accepted as the direction defining

L1 = LT, then not only the two directions previously found in

�(8,6�) but also all the other directions with n < 15 and ! >

1.4� have to be taken into account. These are listed in Table 5 .

However, the increase from �[218] to �[217] is abrupt and clearly

shows that the lattice node quasi-restored along this direction

is much farther from the composition surface than the one on

[218]. This is expressed by the ratio �[217]/�[218] = 1.69. A

satisfactory description of the degree of quasi-restoration is

given by the two sublattices in �(8,6�).

The conventional mesh in (241) is defined by the two

directions [10�22] and [1�112] that, together with [218], define a
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Table 5
Analysis of the {241} twin in diaphorite in different �(�, 6�) regions.

� �� [hkl] n ! nE �[uvw]�/�[uvw]�
1

1–6 0 – – – – –
7 1 [216] 7 5.6 7.0 –
8–14 2 [218] 8 2.7 4.0 1.13

[216] 7 5.6
15–30 6 [217] 15 1.4 1.9 1.69

[7, 3, 26] 13 3.6
[7, 3, 22] 12 3.4
[5, 3, 22] 11 4.9
[5, 3, 18] 10 5.5
[218] 8 2.7
[216] 7 5.6

Table 6
Analysis of the {032} twin in chalcocite in different �(�, 6�) regions.

� �� [hkl] n ! nE �[uvw]�/�[uvw]�
1

1–8 0 – – – – –
9 1 [326] 9 3.4 9.0 –
10–18 2 [326] 10 3.3 5.0 1.12

[427] 9 3.4
19– 4 [7, 4, 13] 19 2.0 3.8 1.64

[214] 11 4.1
[326] 10 3.3
[427] 9 3.4

10 ‘la macle de Pierre-Levée . . . aurait un indice beaucoup plus élevé que de
coutume’ (Drugman, 1928, p. 190).



triclinic, pseudomonoclinic C b-unique cell with parameters

a = 19.779, b = 65.207, c = 18.829 Å, � = 89.38, � = 98.62,

� = 87.50�. Twinning is by reticular pseudopolyholohedry.

L2 is of the same type but with parameters

a = 19.779, b = 57.266, c = 18.829 Å, � = 92.98, � = 98.62, � =

94.23�.

5.6. Chalcocite twin

Chalcocite, Cu2S, is a sulfide with space group P21/c, a =

11.881, b = 27.323, c = 13.491 Å, � = 116.35�. The {032} twin

reported by Palache et al. (1952) has n = 9 and ! = 3.4�, the

quasi-perpendicular direction being [326]. Not far from this

direction, there is another one, [427], which corresponds to n =

10 and ! = 3.3�. Further increase in the number of concurrent

sublattices � is obtained only from �(19,6�), with �[uvw]�/

�[uvw]�
1 = �[7,4,13]/�[326] = 1.64 (�[7,4,13] = 101.16, �[326] =

61.56 Å). The {032} twin in chalcocite is thus interpreted as an

nE = 5.0 hybrid twin where two sublattices contribute signifi-

cantly to the lattice quasi-restoration. The conventional mesh

in (032) is defined by the two directions [100] and [2�223] that,

together with [427], define a pseudomonoclinic C-centred

b-unique cell with parameters a = 65.842, b = 100.891, c =

11.881 Å, � = 93.19, � = 95.05, � = 89.00�. Twinning is by

reticular pseudopolyholohedry. L2 is of the same type but with

parameters a = 11.881, b = 90.817, c = 65.842 Å, � = 86.58, � =

95.05, � = 90.18�. See Table 6.

5.7. Klockmannite twin

Taylor & Underwood (1960) reported an i-TLS twin with n =

13 in klockmannite, CuSe (P63/mmc, a = 3.938, c = 17.25 Å).

The twin plane is (13�440) and the perpendicular direction is

[570] (n = 13, != 0�). The geminographical analysis shows that

in �(13,6�) � = 2: the alternative sublattice is based on (13�440)/

[230], which corresponds to n = 11 and ! = 3.0�. This second

sublattice brings the effective twin index to a much more

reasonable value, 6.5. LT is oC, a = 14.199, b = 24.593, c =

17.250 Å; twinning is by reticular merohedry. L2 is mP pseudo-

orthorhombic with parameters a = 14.199, b = 17.250, c =

10.419 Å, � = 93.00� and corresponds to twinning by reticular

pseudomerohedry.

5.8. Misorientation of rhombohedral lattice with R = 5

Grimmer & Kunze (2004) applied the theory of coincident-

site lattices (CSL) to the analysis of twinning by reticular

pseudomerohedry. Their Table 9 gives the pairs (hkl)/[uvw] for

sublattices of rhombohedral Lind corresponding to twin index

5 (the � factor in the CSL theory plays the role of the twin

index in the reticular theory of twinning) as a function of c/a

(hexagonal axes). Some of the (hypothetical) twins in Table 9

are of special interest because of their hybrid nature, despite

the Friedelian index. Here we take as representative example

the case of the {101} twin for c/a = 0.4330 that we analyse in full

detail.

The normalized lattice parameters in hexagonal axes (a = 1,

c = 0.4330 Å) become a = 0.5951 Å, � = 114.316� in rhombo-

hedral axes, and the twin plane becomes (100). The perpen-

dicular direction is [10,7,7] ([6,3,24] in hexagonal axes), which

corresponds to n = 5 (� = 5). Not far from it, two other

directions exist, [322] ([217] in hexagonal axes) and [433]

([2,1,10] in hexagonal axes), which make 3.2 and 4.8�,

respectively, with the normal to the twin plane; the corre-

sponding twin indices are 3 and 2. Equation (3) gives an

estimation of nE as

hnEi ¼
10

int 10=10ð Þ2þ int 10=3ð Þ1þ int 10=4ð Þ2
¼ 1:1:

The nodes belonging to the three cells are:
* for LT (f1 = 2, I-centred cell): 10,7,7 and 544;
* for L2 [f2 = 1, primitive cell, int(X1/X2) = 3]: 322, 644 and

966;
* for L3 [f1 = 2, I-centred cell, int(X1/X2) = 2]: 433 and 222,

866 and 444.

To these nine nodes, the neighbours are added, obtained by

adding and subtracting the vectors defining the primitive mesh

in (001), namely [010] and [001], as well as their vector sum,

[011]. The resulting nodes are expressed in the axial setting of

LT = L1 [equation (5)]:

0 10 0

0 7 1

1 7 0

2
4

3
5

1

u v w
�� �

Lind
¼ u v w
�� �

LT
:

Of the whole set of stored nodes, only eight nodes are inde-

pendent and internal to the cell of LT, namely 222, 333, 433,

544, 655, 877, 977 and 10,7,7. The node 433 occurs twice: at the

corner of the first cell of L2 and as [0�11�11] equivalent of the 444

node, namely the I-centring node of the second cell of L2. The

effective twin index is therefore 10/8 = 1.2, only slightly higher

than the estimation calculated above.

In a case like this, the effective twin index is close to 1 and

twinning is thus close to pseudomerohedry, rather than to

reticular merohedry. Of the eight quasi-restored nodes, six

correspond to a non-zero obliquity and represent a hybrid

contribution to the twin. Such a contribution would not exist

for a slightly different value of the ratio c/a: we can conclude

that a crystal with such a specialized metric will most likely

have a significantly higher tendency to twin than other

compounds with a less specialized metric.

6. Discussion

The above analysis is purely reticular, done in terms of D(LT)

andH� = \iD(Lind)i. Actually, either the twin point groupK or

the individual point group H (or both) may be merohedral,

(when H is holohedral H� is centrosymmetric). Let us see

what changes with respect to the analysis developed above.
* The twin point group K is merohedral. D(LT) no longer

coincides withK but is a supergroup of it. If r is the ratio of the

order of D(LT) and the order of K, and q is the index ofH� in

D(LT), then only q/r of the cosets obtained when decomposing

D(LT) correspond to possible twin laws. The reduction of the

number of possible twin laws affects the choice of the

(supposed) twin element but has no effect on the analysis

developed above. Evidently, if the twin element is parallel to a
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symmetry element of H, the above analysis reveals the non-

parallel elements that are equivalent underH�. For example, if

K = 4/m and H� = 2/m, the algorithm finds the four cosets of

D(LT) = 4/mmm with respect to H�: two of them are H� itself

and the coset containing the fourfold operation about the

twofold axis of H�.
*H is merohedral. Each of the q cosets splits into p cosets,

where p is the index of H in DðHÞ. The consequence is that

additional twinning by merohedry with respect toH� = \iHi is

also possible, but this does not influence the occurrence of the

non-merohedric component(s) of the twin.

6.1. Example of DD(LT) �� KK

Let H = H� = m, K = 3m, D(LT) = �33m.11 The coset

decomposition of D(LT) and of K in terms of H� are:

�33m = {1,m[010]} [ {3þ
½001�},m[110]} [ {3
½001�,m[100]} [ {2[100], �33
½001�}

[ {2[010],�11} [ {2[110], �33þ
½001� };

3m = {1,m[010]} [ {3þ
½001�,m[110]} [ {3
½001�,m[100]}.

Of the q = 6 cosets obtained when decomposing D(LT) in

terms ofH�, only q/r = 6/2 = 3 remain for K. The twin lattice is

not influenced by the fact that K is merohedral.

6.2. Example of merohedral HH

Let D(LT) = K = mmm. When passing from H = 2/m

(holohedral) to H = 2 (merohedral), the number of cosets

changes from 2 to 4:

mmm = {1,2[010], �11, m[010]} [ {2[100],2[001],m[100],m[001]}

mmm = {1,2[010] } [ {2[100],2[001]} [ {�11,m[010]} [ {m[100],m[001]}.

The third coset represents twinning by merohedry; the

fourth one is equivalent to the second one in terms of the

lattice: one or the other can be realized in a binary twin, both

in the case of a four-individual twin.

6.3. Solving and refining crystal structures affected by hybrid
twinning

The occurrence of more than one concurrent sublattice

contributing to the (quasi-)restoration of lattice nodes

concerns the post-solution description of the lattice restora-

tion but not the usual procedures of unravelling diffraction

patterns, either from a theoretical viewpoint (cf. Ferraris et al.,

2004) or via algorithms implemented in crystallographic

packages (Herbst-Irmer & Sheldrick, 1998). In fact, the key to

interpreting the diffraction pattern of a twin is the identifica-

tion of a twin law which explains a substantial (quasi-)

restoration of nodes (diffraction spots). Possible additional

contributions via sublattices other than LT concern the quasi-

restoration of further nodes, which however are expected to

be sufficiently separated in view of the higher obliquity. In

other words, the hybrid nature of a twin may appear once the

structure has been solved: it is only a matter of description of

the twin itself but does not interfere with the process of

structure solution and refinement.

It must also be considered that, owing to the low fraction

1=n of (quasi-)overlapped nodes in a non-Friedelian (high-

index) twin, where hybrid twins have a higher chance to

appear, the crystal structure of such twins can reasonably be

solved even without detecting twinning. However, even a low

percent of not detected overlapped diffracted intensities will

negatively affect the refinement of the structure.

7. Conclusions

The present analysis of hybrid twins, first introduced by

Nespolo & Ferraris (2005), shows that the classical twin index

fails to describe the actual degree of lattice (quasi-)restoration

when more than one (quasi-)restored concurrent sublattices

exist within the Friedelian limit on the obliquity.

Particularly remarkable is the fact that some degree of

‘hybridization’ is often present also in Friedelian twins, i.e. in

twins with twin index not higher than 6 and obliquity not

higher than 6� – see the Breithaupt twin in �-quartz described

above. In these cases, nE < n and the probability of occurrence

of the twin is reasonably higher for the same reason for which

the appearance of several non-Friedelian twins is explained on

the basis of the concurrence of more than one sublattice.

The Fortran program GEMINOGRAPHY described in this

article performs a systematic search for non-merohedric twin

laws through the analysis of (quasi-)perpendicular (hkl)/[uvw]

pairs and it allows the hybrid twin components to be found in

all kinds of non-merohedric twins. The program can be

downloaded without charge at the web address: http://

www.lcm3b.uhp-nancy.fr/lcm3b/Pages_Perso/Nespolo/

geminography.php, where detailed instructions on how to

prepare the input file and how to read the output file are also

available.

We wish to express our gratitude to the anonymous

reviewers whose critical remarks significantly improved the

readability of our manuscript. GF acknowledges the Italian

Ministry of University and Scientific Research (MIUR) for

financial support.

References

Arnold, H. (2002). International Tables for Crystallography, Vol. A,
5th ed., edited by Th. Hahn, Section 5. Dordrecht/Boston: Kluwer
Academic Publishers.

Buerger, M. J. (1945). Am. Mineral. 30, 469–482.
Catti, M. & Ferraris, G. (1976). Acta Cryst. A32, 163–165.
Donnay, J. D. H. (1940). Am. Mineral. 25, 578–586.
Donnay, J. D. H. & Donnay, G. (1959). International Tables for X-ray

Crystallography, Vol. III, Section 3.1.9. Birmingham: Kynoch Press.
Donnay, G. & Donnay, J. D. H. (1974). Can. Mineral. 12, 422–425.
Drugman, J. (1927). Mineral. Mag. 21, 366–382.
Drugman, J. (1928). Bull. Soc. Fr. Minéral. 51, 187–192.
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